The Levi Problem on Strongly Pseudoconvex G-bundles

نویسنده

  • JOE J PEREZ
چکیده

Let G be a unimodular Lie group, X a compact manifold with boundary, and M the total space of a principal bundle G → M → X so that M is also a strongly pseudoconvex complex manifold. In this work, we show that if G acts by holomorphic transformations in M , then the space of square-integrable holomorphic functions on M is infinite G-dimensional. We also establish the following: Let z be a point of the boundary M . Then there exists a holomorphic function with no smooth extension beyond z.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Embedding of Pseudoconvex Cr Manifolds of Levi-forms with One Degenerate Eigenvalue

Suppose that M is an abstract smoothly bounded orientable CR manifold of dimension 2n − 1 with a given integrable CR structure S of dimension n− 1. Since M is orientable, there are a smooth real nonvanishing 1-form η and a smooth real vector field X0 on M so that η(X) = 0 for all X ∈ S and η(X0) = 1. We define the Levi form of S on M by iη([X ′, X ′′]), X ′, X ′′ ∈ S. We may assume that M ⊂ M̃ ,...

متن کامل

A Transversal Fredholm Property for the ∂̄-neumann Problem on G-bundles

Let M be a strongly pseudoconvex complex manifold which is also the total space of a principal G-bundle with compact base M/G. Assume also thatG acts onM by holomorphic transformations. For such M , we provide a simple condition on forms α sufficient for the regular solvability of u = α and other problems related to the ∂̄-Neumann problem on M . Similar properties are shared by b.

متن کامل

The ∂̄ - Cauchy problem and nonexistence of Lipschitz Levi - flat hypersurfaces in C Pn with n ≥ 3

In this paper we study the Cauchy–Riemann equation in complex projective spaces. Specifically, we use the modified weight function method to study the ∂̄-Neumann problem on pseudoconvex domains in these spaces. The solutions are used to study function theory on pseudoconvex domains via the ∂̄-Cauchy problem. We apply our results to prove nonexistence of Lipschitz Levi-flat hypersurfaces in comple...

متن کامل

§3.1: The geometry of the unit ball §3.2: Analysis of Bergman Laplacian

A simple model for blow–ups §3.5: Parabolic blow–ups for the model problem §3.6: The Θ–tangent bundle and parabolic blowups §3.7: The small Θ–calculus [EpMeMe] §3.8: The full Θ–calculus [EpMeMe] §3.9: Mapping properties and the composition formula [EpMeMe] §3.10: Construction of the resolvent [EpMeMe] §3.11: Solution of the ∂–Neumann problem [EpMe] 3.0 Introduction The remainder of the course w...

متن کامل

Estimates of Invariant Metrics on Pseudoconvex Domains near Boundaries with Constant Levi Ranks

Estimates of the Bergman kernel and the Bergman and Kobayashi metrics on pseudoconvex domains near boundaries with constant Levi ranks are given. Mathematics Subject Classification (2000): 32F45; 32T27.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008